Equivariant Integration formulæ in HyperKähler Geometry

نویسندگان

  • Jonathan Munn
  • Frances Kirwan
چکیده

Lisa Jeffrey and Frances Kirwan developed an integration theory for symplectic reductions. That is, given a symplectic manifold with symplectic group action, they developed a way of pulling the integration of forms on the reduction back to an integration of group-equivariant forms on the original space. We seek an analogue of the symplectic integration formula as developed by for the hyperKähler case. This is almost straightforward, but we have to overcome such obstacles as the lack of a hyper-Darboux theorem and the lack of compactness in the case of hyperKähler reduction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abelianization for hyperkähler quotients

We study an integration theory in circle equivariant cohomology in order to prove a theorem relating the cohomology ring of a hyperkähler quotient to the cohomology ring of the quotient by a maximal abelian subgroup, analogous to a theorem of Martin for symplectic quotients. We discuss applications of this theorem to quiver varieties, and compute as an example the ordinary and equivariant cohom...

متن کامل

Morse Theory and Hyperkähler Kirwan Surjectivity for Higgs Bundles

This paper uses Morse-theoretic techniques to compute the equivariant Betti numbers of the space of semistable rank two degree zero Higgs bundles over a compact Riemann surface, a method in the spirit of Atiyah and Bott’s original approach for semistable holomorphic bundles. This leads to a natural proof that the hyperkähler Kirwan map is surjective for the non-fixed determinant case. CONTENTS

متن کامل

Instanton Strings and HyperKähler Geometry

We discuss two-dimensional sigma models on moduli spaces of instantons on K3 surfaces. These N = (4, 4) superconformal field theories describe the near-horizon dynamics of the D1-D5-brane system and are dual to string theory on AdS3. We derive a precise map relating the moduli of the K3 type IIB string compactification to the moduli of these conformal field theories and the corresponding classi...

متن کامل

Applications of Equivariant Cohomology

We will discuss the equivariant cohomology of a manifold endowed with the action of a Lie group. Localization formulae for equivariant integrals are explained by a vanishing theorem for equivariant cohomology with generalized coefficients. We then give applications to integration of characteristic classes on symplectic quotients and to indices of transversally elliptic operators. In particular,...

متن کامل

On the noncommutative spin geometry of the standard Podleś sphere and index computations

The purpose of the paper is twofold: First, known results of the noncommutative spin geometry of the standard Podleś sphere are extended by discussing Poincaré duality and orientability. In the discussion of orientability, Hochschild homology is replaced by a twisted version which avoids the dimension drop. The twisted Hochschild cycle representing an orientation is related to the volume form o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008